Self-Organizing Maps and Fuzzy C-Means Algorithms on Gait Analysis Based on Inertial Sensors Data
نویسندگان
چکیده
Human gait corresponds to the physiological way of locomotion, which can be affected by several injuries. Thus, gait analysis plays an important role in observing kinematic and kinetic parameters of the joints involved with such movement pattern. Due to the complexity of such analysis, this paper explores the performance of two adaptive methods, Fuzzy c-means (FCM) and Self-organizing maps (SOM), to simplify the interpretation of gait data, provided by a secondary dataset of 90 subjects, subdivided into six groups. Based on inertial measurement units (IMU) data, two kinematic features, average cycle time and cadence, were used as inputs to the adaptive algorithms. Considering the similarities among the subjects of such database, our experiments show that FCM presented a better performance than SOM. Despite the misplacement of subjects into unexpected clusters, this outcome implies that FCM is rather sensitive to slight differences in gait analysis. Nonetheless, further trials with the aforementioned methods are necessary, since more gait parameters and a greater sample could reveal an undercover variation within the proper walking pattern.
منابع مشابه
Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملInterval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets
Web usage mining involves application of data mining techniques to discover usage patterns from the web data. Clustering is one of the important functions in web usage mining. The likelihood of bad or incomplete web usage data is higher than the conventional applications. The clusters and associations in web usage mining do not necessarily have crisp boundaries. Researchers have studied the pos...
متن کامل